Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues

نویسندگان

  • Graeme L. Hickey
  • Pete Philipson
  • Andrea Jorgensen
  • Ruwanthi Kolamunnage-Dona
چکیده

BACKGROUND Available methods for the joint modelling of longitudinal and time-to-event outcomes have typically only allowed for a single longitudinal outcome and a solitary event time. In practice, clinical studies are likely to record multiple longitudinal outcomes. Incorporating all sources of data will improve the predictive capability of any model and lead to more informative inferences for the purpose of medical decision-making. METHODS We reviewed current methodologies of joint modelling for time-to-event data and multivariate longitudinal data including the distributional and modelling assumptions, the association structures, estimation approaches, software tools for implementation and clinical applications of the methodologies. RESULTS We found that a large number of different models have recently been proposed. Most considered jointly modelling linear mixed models with proportional hazard models, with correlation between multiple longitudinal outcomes accounted for through multivariate normally distributed random effects. So-called current value and random effects parameterisations are commonly used to link the models. Despite developments, software is still lacking, which has translated into limited uptake by medical researchers. CONCLUSION Although, in an era of personalized medicine, the value of multivariate joint modelling has been established, researchers are currently limited in their ability to fit these models routinely. We make a series of recommendations for future research needs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل‌سازی توام داده‌های بقا و طولی و کاربرد آن در بررسی عوامل موثر بر آسیب حاد کلیوی

Background: In many clinical trials and medical studies, the survival and longitudinal data are collected simultaneously. When these two outcomes are measured from each subject and the survival variable depends on a longitudinal biomarker, using joint modelling of survival and longitudinal outcomes is a proper choice for analyzing the available data. Methods: In this retrospective archiv...

متن کامل

Recent Developments in Discrete Event Systems

This article is a brief exposure of the process approach to a newly emerging area called "discrete event systems" in control theory and summarizes some of the recent developments in this area. Discrete event systems is an area of research that is developing within the interstices of computer, control and communication sciences. The basic direction of research addresses issues in the analysis an...

متن کامل

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

کاربرد مدل توأم بقا و داده های طولی در بیماران دیالیز صفاقی

Background and Aim: In many medical studies along with longitudinal data, which are repeatedly measured during a certain time period, survival data are also recorded. In these situations, using models such as, mixed effects models or GEE method for longitudinal data and Cox model for survival data, are not appropriate because some necessary assumptions are not met. Instead, the joint models hav...

متن کامل

A Review on Joint Models in Biometrical Research

In some fields of biometrical research joint modelling of longitudinal measures and event time data has become very popular. This article reviews the work in that area of recent fruitful research by classifying approaches on joint models in three categories: approaches with focus on serial trends, approaches with focus on event time data and approaches with equal focus on both outcomes. Typical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016